

 Source code for ixpeobssim.irf.modf

Copyright (C) 2015--2022, the ixpeobssim team.
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

"""Modulation-related facilities.
"""

from __future__ import print_function, division

import numbers

import numpy

from ixpeobssim.core.rand import xUnivariateAuxGenerator
from ixpeobssim.core.spline import xInterpolatedUnivariateSpline, xInterpolatedBivariateSpline
from ixpeobssim.irf.base import xSpecRespBase
from ixpeobssim.utils.logging_ import logger, abort

pylint: disable=invalid-name, too-many-ancestors, no-member

[docs]
class xAzimuthalResponseGenerator(xUnivariateAuxGenerator):

 """Random number generator for the azimuthal response of the polarimeter.

 Here is the basic underlying math. Typically the response of a polarimeter
 to monochromatic, linearly polarized incident radiation is of the form:

 .. math:: N(\\phi) = A + B \\cos^2(\\phi - \\phi_0).

 This can be conveniently rewritten in term of the overall normalization
 (i.e., the total number of events) and the modulation, defined as

 .. math::
 m = \\frac{N_\\text{max} - N_\\text{min}}
 {N_\\text{max} + N_\\text{min}} = \\frac{B}{2A + B}

 (the modulation can also be characterized as the fraction of modulated
 events in a given distribution, as can be readily demonstrated, and it is
 the quantity that the detector is effectively measuring).
 The angular response can be rewritten as

 .. math::
 N(\\phi) = \\frac{N_0}{2\\pi} \\left[
 1 + m \\cos(2(\\phi - \\phi_0))
 \\right].

 For completeness, the modulation, the modulation factor and the polarization
 degree for a monocromatic source are related to each other through:

 .. math::
 m(E, t) = P(E, t) \\times \\mu(E)

 (i.e., at any given energy the modulation factor is the modulation of the
 detector response for 100% linearly polarized incident radiation).

 In terms of throwing random numbers, the phase is a trivial constant that
 can be added after the fact (modulo 2pi), so effectively the
 relevant probability density function is

 .. math::
 \\text{pdf}(\\phi) = \\frac{1}{2\\pi} \\left[
 1 + m \\cos(2\\phi) \\right],

 .. image:: ../docs/figures/test_azimuthal_resp_pdf.png

 The corresponding cumulative distribution function is

 .. math::
 \\text{cdf}(\\phi) = \\frac{1}{2\\pi} \\left(
 \\phi + \\frac{m}{2}\\sin{(2\\phi)} \\right),

 and it is unfortunate that it cannot be inverted, otherwise we would
 have no need to interpolate for generating random numbers according to
 this distribution.

 .. image:: ../docs/figures/test_azimuthal_resp_cdf.png

 From the prospecive of the code, this generator is a standard
 `xUnivariateAuxGenerator` where the azimuthal angle is our
 random variable and the modulation is our auxiliary variable. For any given
 value of the modulation, a vertical slice is providing the corresponding
 one-dimensional pdf.

 .. image:: ../docs/figures/test_azimuthal_resp_generator.png

 The class also provide facilities to fit a histogram to recover the
 underlying modulation and phase.

 Example

 >>> import numpy
 >>> from ixpeobssim.utils.matplotlib_ import plt
 >>> from ixpeobssim.irf.modf import xAzimuthalResponseGenerator
 >>>
 >>> generator = xAzimuthalResponseGenerator()
 >>> modulation = numpy.full(1000000, 0.5)
 >>> phase = numpy.radians(45.)
 >>> phi = generator.rvs_phi(phase, modulation)
 >>> hist = plt.hist(phi, bins=numpy.linspace(0, 2*numpy.pi, 100),
 histtype='step', label='Random angles')
 >>> fit_results = generator.fit_histogram(hist)
 >>> fit_results.plot()
 >>> plt.show()

 .. image:: ../docs/figures/test_azimuthal_resp_rvs.png
 """

 def __init__(self):
 """Constructor.
 """
 phi = numpy.linspace(-numpy.pi, numpy.pi, 100)
 m = numpy.linspace(0., 1., 100)
 fmt = dict(xlabel='$\\phi$ [rad]', ylabel='m')
 xUnivariateAuxGenerator.__init__(self, phi, m, self.pdf, **fmt)

[docs]
 @staticmethod
 def pdf(phi, m):
 """Evaluate the underlying one-dimensional pdf for a given value of the
 modulation, and assuming that the phase is identically zero.

 Arguments

 phi : float or array
 The (independent) azimuthal angle variable, in [-pi, pi].

 m : float or array
 The modulation, in [0, 1].
 """
 return (1 + m * numpy.cos(2. * phi)) / (2. * numpy.pi)

[docs]
 @staticmethod
 def cdf(phi, m):
 """Evaluate the underlying one-dimensional cdf for a given value of the
 modulation, and assuming that the phase is zero.

 Arguments

 phi : float or array
 The (independent) azimuthal angle variable, in [-pi, pi].

 m : float or array
 The modulation, in [0, 1].
 """
 return 0.5 + (phi + 0.5 * m * numpy.sin(2. * phi)) / (2. * numpy.pi)

[docs]
 def build_horizontal_ppf(self):
 """Overloaded method.

 This is essentially done for a few reasons:

 * we do have an analytical form of the cdf that we can use to
 reduce the numerical noise;
 * this random generator is peculiar in that the pdf is linear in the
 auxiliary variable m;
 * this is possibly the most important random engine in the framework
 and its accuracy must be tested carefully.

 There are many parameters that can be optimized, here, in order to
 maximize the accuracy of the ppf representation. (This accuracy is
 characterized in test/test_azimuthal_response.py in terms of standard
 and maximum relative error). Among these are the grids sampling the
 modulation and quantile values, and the order of the various splines
 involved. We put some thoughts into getting this right, but we cannot
 exclude that this can be improved.

 For the modulation values we just take a constant-pitch grid, while for
 the quantiles we calculate the cdf (for m = 1, which is where the
 deviations from a straight lines are largest) on a constant-pitch grid
 in angle.

 We empirically found that k=3 is the best spline index for the ppf
 at any given modulation value, while we get the maximum accuracy for
 kx = ky = 1 in the actual bivariate spline representing the ppf.
 """
 phi = numpy.linspace(-numpy.pi, numpy.pi, 200)
 m = numpy.linspace(0., 1., 200)
 q = self.cdf(phi, m=1.)
 z = numpy.zeros(shape = (q.size, m.size))
 for i, _m in enumerate(m):
 _ppf = xInterpolatedUnivariateSpline(self.cdf(phi, _m), phi, k=3)
 z[:, i] = _ppf(q)
 fmt = dict(xlabel=self.ylabel, ylabel='q', zlabel=self.xlabel)
 return xInterpolatedBivariateSpline(q, m, z, kx=1, ky=1, **fmt)

[docs]
 def rvs_phi(self, m, phase):
 """Generate random variates for any modulation and phase values.

 This is essentially calling the underlying xUnivariateAuxGenerator.rvs()
 method passing the modulation array as an argument and adding the phase
 array (modulo 2pi) to the output.

 Arguments

 m : array
 An array of modulation values. (The function returns an equal-length
 array of phi values.)

 phase : float or array
 The phase of the modulation. (This can either be a vector or an
 array of the same length as `modulation`.)
 """
 return numpy.mod(self.rvs(m) + phase, 2 * numpy.pi) - numpy.pi

[docs]
class xModulationFactor(xSpecRespBase):

 """Class describing the modulation factor.

 The effective area is essentially a linear spline, with built-in facilities
 for evaluation and plotting.

 To zero-th order, an `xModulationFactor` instance is an object capable of
 evaluating itself in a point or in a grid of points, and capable of
 plotting itself.

 More interestingly, it can generate random `phi` values, given a vector
 of event energies and corresponding vectors (or simple floats) representing
 the polarization degree and angle corresponding to the energies themselves.
 Internally, any `xModulationFactor` has an `xAzimuthalResponseGenerator`
 object and when the `xModulationFactor.rvs_phi()` method is called,
 the polarization degree is multiplied by the modulation factor of the
 detector, evaluated at the right energy, and converted into a modulation
 value, after which the underlying `xAzimuthalResponseGenerator.rvs_phi()`
 is called.
 """

 Y_UNITS = ''
 Y_LABEL = 'Modulation factor'

 def __init__(self, file_path, extension='fits', k=1):
 """Overloaded constructor
 """
 xSpecRespBase.__init__(self, file_path, extension, k)
 self.generator = xAzimuthalResponseGenerator()

[docs]
 def rvs_phi(self, energy, polarization_degree, polarization_angle):
 """Return random variates for a given array of values of energy,
 polarization degree and polarization angle.

 Arguments

 energy : array
 An array of energy values. (The function returns an equal-length
 array of phi values.)

 polarization_degree : array or float
 The polarization degree, in [0--1]. (This can either be a vector
 or an array of the same length as `energy`.)

 polarization_angle : array or float
 The polarization angle, in radians. (This can either be a vector or
 an array of the same length as `energy`.)
 """
 # If the input polarization degree is a number (i.e., a float) convert
 # it to a numpy array of the same shape of the energy with identical
 # values. This makes our life easier downstream in verifying that the
 # input values for the polarization degrees lie between 0 and 1---and
 # to provide a sensible diagnostic message if this is not the case.
 if isinstance(polarization_degree, numbers.Number):
 polarization_degree = numpy.full(energy.shape, polarization_degree)
 # Make sure that the polarization degree is within the physical range.
 # Note that this chack is comparatively hard to do at the model level,
 # before the actual event energies have been extracted, as in principle
 # one would need to evaluate the model itself on an infinitely fine
 # grid.
 def _msg(condition):
 """Small nested function to print out some useful diagnostics about
 possible unphysical values for the polarization degree.
 """
 mask = numpy.where(condition)
 efunky = energy[mask]
 pfunky = polarization_degree[mask]
 msg = 'Unphysical polarization degree %s at %d input energies %s'
 logger.error(msg, pfunky, len(efunky), efunky)
 # Do the actual checks.
 if polarization_degree.min() < 0.:
 _msg(polarization_degree < 0.)
 abort('The polarization degree must be >= 0')
 if polarization_degree.max() > 1.:
 _msg(polarization_degree > 1.)
 abort('The polarization degree must be <= 1')
 # And now we're good to go.
 modulation = self(energy) * polarization_degree
 return self.generator.rvs_phi(modulation, polarization_angle)

[docs]
 def weighted_average(self, energy):
 """Return the weighted average of the mudulation factor given an
 array of energies.

 Arguments

 energy : array
 An array of energy values.
 """
 return self(energy).sum() / len(energy)

[docs]
 def plot(self):
 """Overloaded method for the xpirfview application.
 """
 # pylint: disable=arguments-differ
 self.plot_base()

ixpeobssim version 31.0.1

Navigation

Introduction

	Overview
	Showcase
	Installation
	Quick start
	Data format

Simulating observations

	Tutorial
	Application reference
	Creating source models
	Toy source models
	Data Challenge 1
	Large data files
	Response functions
	Orbit, SAA and GTIs
	Backgrounds

Analysis tools

	Filtering event lists
	Binned data products
	XSPEC support
	Analysis pipelines
	Simulation benchmarks
	Broadband polarization
	Inter-operability

Specific applications

	Magnetar models
	Extended sources
	Binary systems
	Event Display
	Sonification

Advanced topics

	ixpesim interface

Developer zone

	Implementation details
	API
	Code development
	Release notes
	About ixpeobssim

Related Topics

	Documentation overview	Module code

 Quick search

 ©2017–2020, the ixpeobssim team.

 |
 Powered by Sphinx 7.2.6
 & Alabaster 0.7.16

